

TITLE: Surface Decontamination of Selenium Compounds (Selenium powder) by DeconGel[™] 1101.

ABSTRACT

Surface decontamination efficacy determination of DeconGelTM 1101 on stainless steel, carbon steel, and concrete surfaces contaminated with Selenium powder was performed with ICP-OES (Inductively Coupled Plasma-Optical Emission Spectroscopy) according to Environmental Protection Agency (EPA) SW-846 Methods: 3005A (sampling) and 6010C (analysis).

HAZARDOUS MATERIALS RELEVANCE

Selenium is used in industrial applications including steel alloying and rubber compounding. It is also used to produce printers and copier drums. Selenium is hazardous by contact, ingestion, and inhalation as defined by OSHA.¹ Selenium powder was chosen as a representative selenium compound for evaluating DeconGel's efficacy; DeconGel is expected to have similar efficacy towards the wide range of selenium compounds.

HIGHLIGHTS

- Excellent surface decontamination was achieved by applying DeconGel 1101 onto surfaces
 contaminated with selenium resulting in encapsulation of contaminants by DeconGel's active
 components. Decontamination efficacies of DeconGel 1101 ranged from 96.2% (on concrete)
 to 99.8% (on carbon steel) to 99.2% (on stainless steel) as determined by residual swipe
 testing.
- Optimized experimental and analytical methods were successfully developed following standardized EPA sampling and analysis methods as guidelines for determination of inorganic compounds in aqueous samples. When necessary, experimental methods were customized to afford complete dissolution of inorganic contaminants, and to ensure accurate decontamination efficacy determination of DeconGel.

RESULTS

Table 1 shows the decontamination efficacies of DeconGel 1101 on stainless steel, carbon steel, and concrete surfaces contaminated with selenium as determined by residual swipe testing.

v043012 Page 1 of 5

¹ Occupational Safety & Health Administration (OSHA); http://www.osha.gov/ (2010)

Table 1. Decontamination efficacy of DeconGel 1101 on selenium compound (Elemental Se powder) on stainless steel, carbon steel, and concrete surfaces as determined by residual swipe testing.

Swipe Testing (ppm)		Formulation
		DeconGel 1101
Stainless Steel	Control	447.8 <u>+</u> 6.8
	Residual	3.64 <u>+</u> 4.72
	Decon. Efficacy (%)	99.2 <u>+</u> 2.8
Carbon Steel	Control	455.8 <u>+</u> 32.1
	Residual	0.88 <u>+</u> 0.85
	Decon. Efficacy (%)	99.8 <u>+</u> 7.1
Concrete	Control	412.3 <u>+</u> 20.9
	Residual	15.9 <u>+</u> 6.2
	Decon. Efficacy (%)	96.2 <u>+</u> 7.4

21880x dilution factor for samples and controls

NOTES

- ASTM method E1728-03 (a standardized swipe testing method used for sampling of inorganic contaminants) was the integral method used to accurately evaluate DeconGel's decontamination efficacy. GhostWipe™ (Environmental Express; Mt. Pleasant, SC) swipes (pre-wetted with DI H₂O) were utilized in this swipe testing method.
- Direct chemical analysis of the dried peeled DeconGel samples was also utilized to provide an improved understanding of DeconGel's decontamination efficacy.
- Standardized EPA SW-846 Sampling Method 3005A "Acid Digestion of Waters for Total Recoverable or Dissolved Metals for Analysis by FLAA or ICP Spectroscopy" was followed as a guideline to prepare all samples and controls. When deemed necessary, digestion methods were customized by increasing hydrochloric and nitric acid concentrations from 25% to 35% wt, and/or by heating samples to higher temperatures using a HotBlock™ Sample Heater (Environmental Express; Mt. Pleasant, SC) to result in complete digestion of the inorganic contaminants. All samples, controls, and standards were prepared using the same dissolution solution and experimental conditions to ensure both correct instrument calibration and accurate analytical results.
- ICP-OES instrumentation is a sensitive and accurate analytical tool for qualitative and quantitative determination of a large number of inorganic compounds. Standardized EPA SW-846 Analytical Method 6010C "Inductively Coupled Plasma-Atomic Emission Spectrometry" was followed as a guideline to prepare all samples and controls.

CALCULATIONS

Decontamination Efficacy (Swipe Testing) =

[(contaminant (ppm) of Swipe Control) – (contaminant (ppm) of Residual Swipe)/contaminant (ppm) of Swipe Control] x 100%

v043012 Page 2 of 5

MATERIALS AND METHODS

Sample Method

In a typical procedure, 0.05 g of contaminant was evenly applied on 1) stainless steel (surface area: 56.3 cm²), 2) carbon steel (commercial grade, surface area: 100 cm²), and 3) concrete (industrial grade, surface area: 56.3 cm²) coupons. Approximately 6.0 g of DeconGel 1101 was poured onto the contaminated surface and let to dry for 24-48 hours. Dried DeconGel samples were peeled off the contaminated surface, and the surface was swipe tested (ASTM method E1728-03) using a GhostWipe™ swipe (Environmental Express; Mt. Pleasant, SC). Swipe were suspended in 100 mL aqueous acidic solution (20% HCl, 15% HNO₃, 65% deionized (DI) H₂O) for 24 hours. When necessary, samples were heated to 94°C for 4-14 hours to facilitate complete dissolution of inorganics using a HotBlock™ Sample Heater (Environmental Express; Mt. Pleasant, SC). Samples were allowed to cool to room temperature and were then analyzed via ICP-OES (see below).

Control Method

For swipe control samples, 0.05 g of contaminant was evenly applied on 1) stainless steel (surface area: 56.3 cm²), 2) carbon steel (commercial grade, surface area: 100 cm²), and 3) concrete (industrial grade, surface area: 56.3 cm²) coupons, and the surface was swipe tested (ASTM method 1728-03) using a GhostWipe™ swipe (Environmental Express; Mt. Pleasant, SC). Swipe samples were suspended in 100 mL aqueous acidic solution (20% HCl, 15% HNO₃, 65% DI H₂O) for 24 hours and analyzed via ICP-OES (see below).

Reagents and Standards

Selenium, Se, 200 mesh, (CAS# 7782-49-2, Fisher Scientific; Fair Lawn, NJ) was used as received.

A 10.0 ppm calibration standard was prepared using reagent grade powdered Se and freshly prepared aqueous acidic solution (20% HCl, 15% HNO₃, 65% DI H_2O). DI H_2O was used as the blank sample.

Analytical Instrumentation

A Thermo ICP-OES instrument model radial iCap 6300 was used to determine Se concentration (ppm) of all samples and controls using a freshly prepared 10.0 ppm calibration standard.

Analyte (selenium) analyzed at 196.0 nm

Pump Speed: 0.5 mL/min

APPLICATION INSTRUCTIONS FOR END-USERS:

Use product directly as is from container. DO NOT DILUTE. Masking or painters tape can be applied along one edge of the area that is to be decontaminated to aid creating a peeled edge to grip for peeling the dried film. Apply DeconGel using a paint brush, a trowel, a handheld sprayer, or an industrial grade sprayer (use DeconGel 1120 or 1121 for spray application).

v043012 Page 3 of 5

The thickness of the gel and the number of coats is dictated by the surface to be decontaminated. Coating thickness required for good peel characteristics varies with substrate and generally increases with substrate porosity. It is recommended that first time customers test DeconGel on a small sample area to confirm the required film thickness and dry time for their specific application. If the film is difficult to peel, please apply an additional coat. A razor blade is useful to start the peel. Lay the blade nearly flat and fillet the edge of the film to create a tab that can be pulled. For surfaces that the gel adheres to well, such as concrete, 12" – 24" strips can be cut in the film resulting in less force being required to peel the film.

➤ Let DeconGel dry for 24 hours

Dry time will vary depending on humidity, temperature, air flow and thickness of the DeconGel. This can take from as little time as an hour for thin coats in a dry environment with plenty of airflow, to overnight or longer if thicker coats are applied in humid environments. Dry times exceeding 24 hours may sometimes be required for good peel performance on bare concrete, wood and other highly porous substrates and substrates with deep cracks or grooves. However, 18-24 hours is often sufficient dry time on good quality concrete. It is recommended that users test a small area to determine drying time prior to applying DeconGel for an entire job. Supplemental heat or air circulation will accelerate DeconGel's drying time for any job.

Peel DeconGel off the surface by starting from one of the edges

When dry, the product locks the contaminants into a polymer matrix. The film containing the encapsulated contamination can then be peeled. DeconGel peels from most non-porous and porous hard surfaces if the dried film is thick enough. If the film is difficult to peel, add another coat, let dry, and peel. In most cases the DeconGel will come off in a single sheet but for odd shaped surfaces you may be required to score DeconGel in order to peel it off.

v043012 Page 4 of 5

➤ Dispose of the dried DeconGel in accordance with the local, state and Federal disposal regulations of the contaminant/substance you are removing. DeconGel itself has no special disposal restrictions.

For questions about DeconGel or to place an order, visit our website at www.decongel.com or contact us at:

CBI Polymers Inc. 1946 Young Street, Suite 480 Honolulu, Hawaii 96826 (808) 949-2215 ext. 146 orders@decongel.com

v043012 Page 5 of 5